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Noonan syndrome (NS) is a developmental disorder characterized by short stature, facial 

dysmorphia, congenital heart defects and skeletal anomalies1. Increased RAS-mitogen-

activated protein kinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 

50% of NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 or KRAS 

mutation (17%) have missense mutations in SOS1, which encodes a RAS-specific guanine 

nucleotide exchange factor (GEF).  SOS1 mutations cluster at residues implicated in the 

maintenance of SOS1 in its autoinhibited form and ectopic expression of two NS-associated 

mutants induced enhanced RAS activation. The phenotype associated with SOS1 defects is 

distinctive, although within NS spectrum, with a high prevalence of ectodermal 

abnormalities but generally normal development and linear growth. Our findings implicate 

for the first time gain-of-function mutations in a RAS GEF in inherited disease and define 

a new mechanism by which upregulation of the RAS pathway can profoundly change 

human development. 

 

NS is an autosomal dominant, genetically heterogeneous trait. PTPN11, the first NS-associated 

gene identified6, was discovered through positional cloning. It encodes the non-membranous 

protein tyrosine phosphatase, SHP-2, that primarily serves positive regulatory roles in signal 

transduction, particularly via the receptor tyrosine kinase (RTK)-mediated RAS-MAPK 

pathway. Most mutations perturb the switch between the basally inactive and phosphotyrosine-

bound active conformations of SHP-2, shifting the equilibrium towards the latter3,6-8. Similar 

somatic PTPN11 mutations underlie several hematopoietic disorders, particularly juvenile 

myelomonocytic leukemia (JMML)9.  Gain-of-function RAS mutations and second allele loss of 
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NF1 also cause JMML, emphasizing the effects of gain-of-function PTPN11 mutations in 

increasing RAS-MAPK signaling. 

Recent disease gene discovery established that NS and some phenotypically related traits are 

classed etiologically as disorders of dysregulated RAS-MAPK signaling. LEOPARD syndrome 

arises from a functionally distinct class of PTPN11 mutations10,11. Gain-of-function germline 

mutations in HRAS have been found in Costello syndrome and in KRAS in severe NS and cardio-

facio-cutanteous (CFC) syndrome2,4,12,13. In addition, BRAF, MEK1 and MEK2 mutations have 

been observed in CFC13,14. 

The initial and rate limiting step in the activation of the RAS-MAPK pathway by extracellular 

signals is the ligand-dependent conversion of RAS-GDP to RAS-GTP. In the context of RTK 

signaling, this reaction is catalyzed by the RAS-specific guanine nucleotide exchange factor  

(GEF) Son of Sevenless (SOS)15. Therefore, mutational activation of SOS provides the potential 

for the upregulation of RAS signaling, an apparent requisite for NS disease pathogenesis. The 

human genome contains two SOS genes, SOS1 and SOS2, encoding highly similar multi-domain 

proteins (Fig. 1). Structure function studies of SOS1 have indicated that in the basal state the 

protein is maintained in an autoinhibited conformation due to complex regulatory intra- and 

inter-molecular interactions16-18. Following RTK stimulation, SOS1 is recruited to the plasma 

membrane  where it acquires  a catalytically active conformation by mechanisms that are not 

fully understood.      

To explore whether SOS1 mutations have a role in NS, we assembled genomic DNAs from 96 

individuals who were negative for mutations in the two established NS genes (Cohort A) and 

performed high throughput resequencing of the SOS1 coding region (exons 2-24) and flanking 

intronic boundaries. We identified 33 sequencing variants, including 12 non-synonymous 
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changes observed in 15 samples (Table 1 and Supplemental Table 1). Strikingly, three variants, 

affecting six subjects, altered Arg552 and a fourth resided nearby, altering Leu550. Both residues 

are evolutionarily conserved.  

To provide further evidence that nonsynonymous variants were mutations, we leveraged the 

sporadic cases.  Among the seven variants for which we possessed both parental samples, we 

failed to observe the relevant sequence change in either parent in five instances; paternity was 

confirmed in each, providing final proof that these were de novo mutations (Table 1). In single 

cases, P655L and H1320R were inherited from unaffected parents. W432R, L550P, and Y702H 

were observed in families with two to three affected individuals and co-segregated with disease. 

For the exons with variants that were not de novo (exons 11, 13, 14, 17 and 24), we analyzed 155 

control individuals, identifying only the P655L variant in the population. Thus, we concluded 

that ten missense changes were disease-causing mutations. We suspect that the H1320R change 

is a rare polymorphism but cannot exclude incomplete penetrance in the unaffected parent. The 

prevalence of SOS1 mutations in the cohort was 13/96 or 12.5% (95% C.I.: 7.4-22%), which can 

be considered a lower limit due to the incomplete coverage inherent with our high throughput 

approach.  

To elucidate further the range of molecular defects associated with disease, SOS1 exons 2-24 

were scanned with DHPLC in an additional 33 NS samples without PTPN11 or KRAS mutation 

(Cohort B).  Sequencing of amplimers with abnormal denaturing profiles revealed an additional 

seven missense mutations among nine subjects as well as another probable rare nonsynonymous 

polymorphism, Q977R, that a proband inherited from an unaffected mother but was not found 

among the controls (Table 1). 
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In Cohort B, two additional mutations altering Arg552 and two independent S548R alleles 

were observed, providing further evidence for the importance of that region. A second mutation 

cluster in SOS1’s pleckstrin homology (PH) domain became apparent with the identification of 

an additional instance of E433K as well as a C441Y mutant. A third functional cluster residing in 

the interacting regions of the Dbl homology (DH) and RAS exchanger motif (Rem) domain was 

apparent with the identification of M269R, which joined W729L and I733F identified in Cohort 

A.  

The GEF activity of SOS is principally controlled by two regulatory determinants: A catalytic 

site where the dissociation of nucleotide from RAS occurs and an allosteric site which stimulates 

exchange activity through the binding of nucleotide-bound RAS19.  Whereas the catalytic site is 

located entirely within the Cdc25 domain, the allosteric site is bracketed by the Cdc25 domain 

and Rem domains.  In resting conditions, SOS is autoinhibited due to a blockade of the allosteric 

site by the DH-PH unit18.  The three NS-associated SOS1 mutation clusters reside in regions 

within the molecule that are predicted to contribute structurally to the maintenance of the protein 

in its autoinhibitied conformation.  For example, Arg552 lies in the helical linker between the PH 

and Rem domains (Fig. 1) and is predicted to interact directly with the side chains of Asp140 and 

Asp169 in the histone domain of SOS117.  The disruption of this interaction could affect the 

relative orientation of the DH-PH unit and the Rem domain. The mutation cluster represented by 

E433K and C441Y may disrupt the autoinhibited conformation by causing a structural 

destabilization of the PH domain.  The third cluster (M269R, W729L and I733F) consists of 

residues that mediate the interaction of the DH and Rem. Trp729 interacts directly with Met269, 

thereby positioning the DH domain in its autoinhibitory conformation. Trp729 is also critical for 

the binding of Ras at the allosteric site.  Sondermann and co-workers engineered a W729E SOS1 
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mutant, which proved unable to bind RAS-GTP at the allosteric site and had severely reduced 

nucleotide release from RAS-GDP at the catalytic site18. Since the NS-associated W729L 

substitution is more conservative, we suspected that it would preferentially affect autoinhibition. 

To examine directly the effects of these mutations on SOS1 function, we chose two 

representative SOS1 mutants, R552G and W729L, which were expressed transiently in Cos-1 

cells. RAS activation, as a read-out of GEF activity, was assessed using a RAF-RBD binding 

assay (Fig. 2).  When wild type SOS1 was expressed, RAS activation was low in starved cells, 

increased 26-fold rapidly after EGF stimulation and returned to basal levels by 30 min.  In 

contrast, expression of R552G or W729L SOS1 resulted in the accumulation of activated RAS in 

starved cells and the response to EGF was prolonged. These results confirmed our predictions 

based on structural information that the NS-associated SOS1 mutations would principally 

abrogate autoinhibition, resulting in increased RAS activation.   

Extensive phenotype data were available for 16 individuals with SOS1 missense mutations. 

These individuals had cardiac disease (primarily pulmonary valve stenosis), pectus deformities, 

shorted and webbed neck, and dysmorphic facial features ranging from typical for NS to an 

appearance resembling cardio-facio-cutaneous syndrome (Table 2 and Supplemental Figure 1). 

Ectodermal features including facial keratosis pilaris, hypoplastic eyebrows and curly hair were 

significantly more prevalent among individuals with a SOS1 mutation compared to the general 

NS population, particularly during childhood. Short stature with a height below the 3rd centile 

was observed in only 2 of 15 individuals with a SOS1 mutation, whereas prevalence is 70-76% 

among NS in general and PTPN11 mutation-negative NS. In contrast, macrocephaly was 

overrepresented among those with SOS1 mutations. Only one individual with a SOS1 mutation 

had mental retardation, potentially attributable to critical illness as a newborn. In comparison, 30 
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and 35% of all children with NS and those without a PTPN11 mutation, respectively, require 

special education.   

The analysis of 129 probands with NS from two cohorts identified 14 different molecular 

lesions among 22 independent cases (17% of PTPN11-/KRAS-mutation-negative cases), making 

SOS1 the 2nd most common cause of this disorder thus far. Like PTPN11, SOS1 mutations were 

found in sporadic and familial NS and engendered a high prevalence of pulmonary valve disease. 

The SOS1-associated phenotype, while clearly within the NS spectrum, resembled CFC 

somewhat in its dysmorphia, macrocephaly and ectodermal manifestations but differed notably 

with preserved development and linear growth. SOS1 mutations were invariably missense defects 

and clustered at specific regions implicated in the complex regulation of SOS catalytic activity. 

Among mutations causing developmental disorders with dysregulated RAS-MAPK signaling, 

SOS1 defects are notable for affecting a protein functioning entirely upstream of RAS.  

The results reported here represent the first examples of inherited gain-of-function mutations 

in SOS1. A frameshift mutation in exon 21 of SOS1 has been reported in one family inheriting 

hereditary gingival fibromatosis20. No additional case inheriting a SOS1 mutation with this 

autosomal dominant trait has been reported, deferring final proof of causality. Complete loss of 

Sos1 in mice is embryonic lethal due to placental and cardiac defects, but haploinsufficient mice 

develop normally21,22. Transgenic mice expressing a dominant active form of Sos1 in 

keratinocytes develop skin papillomata; this epidermal proliferation can be suppressed with 

reduced Egfr signaling23. In contrast with several other genes now associated with inherited 

disorders with dysregulated RAS signaling, somatic SOS1 mutations have not been reported in 

cancer. 
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The biochemical analysis of two NS-related SOS1 proteins revealed gain-of-function effects 

resulting in increased RAS activation.  Since many of the SOS1 mutations altered residues 

related to the autoinhibition of SOS, either through interaction of the histone folds with the PH-

Rem linker or interaction of the DH domain at the allosteric RAS binding site, the predominant 

pathogenetic mechanism appears to be increased availability of the allosteric RAS binding site 

causing increased GEF activity. This increased GEF activity, in turn, increases RAS activation, 

which will lead to downstream signaling.  SOS proteins also possess GEF activity through their 

DH and PH domains towards Rho GTPases such as RAC15.  Aside from genetic evidence 

implicating RAS signaling in NS and related disorders, the positions of the SOS1 mutations 

implicate RAS signaling specifically.  

The two highly conserved SOS genes in vertebrates are widely expressed24. Sos1 and Sos2 

bind a docking protein, Grb2, with different affinities25 and Sos2 could not compensate for the 

loss of Sos1 in the Sos1 knockout mice, suggesting that these proteins play unique roles. We 

examined the hypothesis that SOS2 mutations similar to those in SOS1 can also cause NS but 

failed to identify sequence changes at homologous positions. 

Discovery of disease-causing mutations is challenging for genetic disorders presenting 

primarily sporadically or in small kindreds.  Marked genetic heterogeneity further complicates 

such efforts due to statistical power issues. Our results provide proof of principal for high 

throughput resequencing with large cohorts, particularly when the relevant biological pathway 

can be identified. With three disease genes identified for NS but more than 40% of cases 

unexplained, future efforts will be directed towards exploiting this strategy in order to further 

advance diagnostics and prognostication for this disorder. 
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METHODS 

High-Throughput Resequencing of SOS1. We assembled a cohort of 96 human subjects with 

NS from whom genomic DNAs were obtained from peripheral blood leukocytes.  Nearly all 

subjects were Caucasian and of European ancestry, with the majority being Italian.  The subjects 

did not harbor PTPN11 or KRAS mutation based on scanning of the coding exons with DHPLC 

(Wave 2100 System, Transgenomic) and/or bidirectional DNA sequencing as previously 

described2,5. For sporadic cases, which represented the vast majority of the subjects, we obtained 

both parental DNAs whenever possible. All non-anonymous samples were collected under 

Institutional Review Board-approved protocols and with informed consent. 

We chose a cohort of this size with the assumption that SOS1 would account for at least 1% of 

NS (or 2% of PTPN11-/KRAS-negative NS). Based on Collins and Schwartz 26, this powered the 

study to detect a mutation in an NS gene at approximately 80% with α=0.05. If the gene 

accounted for 5% of PTPN11-/KRAS-negative NS, then the power to detect it with a cohort of 

this size would exceed 95%. 

A high throughput approach to the resequencing of SOS1 was performed at the Joint Genome 

Institute. The resequencing protocol was as follows: Oligonucleotide primers (sequences 

available upon request) for amplifying the SOS1 coding exons (n=23) were designed to give a 

product size in the range of 200-700 bp with a minimum of 40 bp flanking the splice sites using 

the Exon Primer program (http://ihg.gsf.de/ihg/ExonPrimer.html), which is bundled with the 

UCSC Genome Browser (hg17 genome build: http://genome.ucsc.edu/).  M13F and M13R tags 

were added to the forward and reverse primers, respectively. Five nanograms of genomic DNA 

from each NS sample was amplified in a 8 μl PCR reaction using AmpliTaq Gold (Applied 

http://ihg.gsf.de/ihg/ExonPrimer.html
http://genome.ucsc.edu/
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Biosystems) using PE 9700 machines and subsequently cleaned using a diluted version of the 

Exo-SAP based PCR product pre-sequencing kit (USB Corporation) dispensed by a nanoliter 

dispenser (Deerac Fluidics Equator).  All PCR set-up procedures were performed in a 384-well 

format using a Biomek NX workstation following their optimization. Sequencing reactions were 

then performed using the M13 primers along with BigDye Terminator v3.1 Cycle Sequencing 

Kit (Applied Biosystems) and cleaned with BET before separation on an ABI 3730xl DNA 

Analyzer. Base calling, quality assessment and assembly were carried out using the Phred, 

Phrap, Polyphred, Consed software suite (http://www.phrap.org/).  All sequence variants 

identified were verified by manual inspection of the chromatograms and putative causative 

mutations were verified using another independent sequencing reaction.  

When available, parental DNAs were then sequenced to establish whether the change was de 

novo. Paternity was confirmed by simple tandem repeat (STR) genotyping using the AmpF/STR 

Identifier PCR Amplification Kit (Applied Biosystems). Anonymous Caucasian control genomic 

DNAs were screened for SOS1 coding exons in which putative mutations had been identified 

using DHPLC analysis of PCR-generated amplimers at column temperatures recommended by 

the Navigator version 1.5.4.23 software (oligonucleotide primer sequences and DHPLC 

conditions available upon request). Amplimers having abnormal denaturing profiles were 

purified (Microcon PCR, Millipore) and sequenced bi-directionally using the ABI BigDye 

terminator Sequencing Kit v.1.1 (Applied Biosystems) and an ABI Prism 310 Genetic Analyzer 

(Applied Biosystems). Eighty-five additional Caucasian control DNAs were digested with MneI 

(New England Biolabs) or BsrsI (Promega) to further exclude occurrence of the 1297G→A and 

1649T→C missense changes, respectively. Informatics analysis of sequences to predict splice 

acceptor and donor sites as well as exonic splice enhancers was performed using programs 

http://www.phrap.org/
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available at the following websites: http://www.cbs.dtu.dk/services/NetGene2, 

http://www.fruitfly.org/seqtools/splice.html, http://rulai.cshl.edu/ tools/ESE. 

 

Analysis of the Second NS Cohort. We assembled a 2nd panel of 33 PTPN11-negative/KRAS-

negative NS genomic DNAs. This panel was used as confirmatory of the results of the 1st panel 

and to extend the range of mutations associated with NS.  These DNAs were scanned for SOS1 

mutations using DHPLC and abnormal amplimers were sequenced bi-directionally as described 

above. 

 

RAS Activation Assay. GST-RAF-RBD fusion proteins were expressed in Escherichia coli by 

induction with 0.5 mM of isopropyl-1-thio-β-D-galactopyranoside (IPTG) for 5 hours. The 

expressed fusion proteins were isolated from bacteria lysates by affinity chromatography with 

glutathione agarose beads for 1 h at 4 °C. Cos-1 cells were co-transfected with HA-tagged RAS 

wild type and wild type (WT) or mutant SOS1.  Twenty-four hours after transfection, cells were 

switched to serum-starvation medium (0% DMEM) for 16 h. Following stimulation with EGF 

(10 ng/ml) for the indicated intervals at 37 ºC, the cells were collected in RBD lysis buffer 

containing 25mM Tris-HCl (pH7.4), 120 mM NaCl, 10 mM MgCl2, 1 mM EDTA, 10% glycerol, 

10 mg/ml pepstatin, 50 mM NaF, 1% aprotinin, 10 µg/ml leupeptin, 1 mM Na3VO4, 10 mM 

benzamidine, 10 µg/ml soybean trypsin inhibitor, 1% NP40, 0.25% sodium deoxycholic acid. 

For each condition, 400 μg of whole cell lysate was pre-cleared with 10 μl 50% GST for 5 min at 

4 oC. The samples were then centrifuged and supernatants were transferred to Eppendorf tubes 

containing 20 μg GST-RAF-RBD immobilized beads. Samples were incubated for 1.5 h at 4 oC.  

The complexes were collected by centrifugation and washed six times with buffer containing 25 

http://www.cbs.dtu.dk/services/NetGene2
http://www.fruitfly.org/seqtools/splice.html
http://rulai.cshl.edu/%20tools/ESE
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mM Tris-HCl (pH 7.4), 120 mM NaCl, 10 mM MgCl2, 1 mM EDTA, 10% glycerol, 50 mM 

NaF, 1% NP40. Protein complexes were eluted with SDS sample buffer, separated by SDS-

12.5% PAGE, and transferred to nitrocellulose membrane. The proteins were detected by 

Western blot with anti-HA antibody (12CA5; 1:10,000) and goat anti-mouse HRP conjugated 

secondary antibody (Cappel; 1:10,000).  

 

Acknowledgments 

We are indebted to the patients and families who participated in the study, the physicians who 

referred the subjects, and the Joint Genome Institute’s production sequencing group. This work 

was supported by Telethon-Italy grant GGP04172 and “Programma di Collaborazione Italia-

USA/malattie rare” (M.T.), US National Institutes of Health Grants HL71207, HD01294, and 

HL074728  (B.D.G.), CA55360 and CA28146 (D.B.-S.), and Italian Ministry of Health Grant 

RC 2006 (B.D.). Research conducted at the E.O. Lawrence Berkeley National Laboratory and 

the Joint Genome Institute was performed under Department of Energy Contract DE-

AC0378SF00098, University of California (LAP). 



 14

Table 1: Missense Variants 

Exon 

DNA 
Sequence 
Variant 

Amino Acid 
Substitution 

SOS1 
Domain 

Cohort 
(Observations)

Mut/Poly; 
Basis1 

11 1294T→C W432R PH A (1) Mut; Ctrl 
11 1297G→A E433K PH A (1) Mut; Ctrl 

11 1649T→C L550P PH-Rem 
Linker A (1) Mut; Ctrl 

11 1654A→G R552G PH-Rem 
Linker A (4) Mut; DN 

11 1655G→A R552K PH-Rem 
Linker A (1) Mut; DN 

11 1656G→C R552S PH-Rem 
Linker A (1) Mut; DN 

13 1964C→T P655L Rem A (1) Poly 

14 2104T→C Y702H Rem A (1) Mut; Ctrl 

15 2186G→T W729L Rem A (1) Mut; DN 

15 2197A→T I733F Rem A (1) Mut; DN 

17 2536G→A E846K Cdc25 A (1) Mut; Ctrl 

24 3959A→G H1320R C-Term A (1) Poly 

4 322G→A E108K HF B (2) Mut; Ctrl 

7 806T→G M269R DH B (1) Mut; DN 

11 1297G→A E433K PH B (1) Mut; Ctrl 

11 1322G→A C441Y PH B (1) Mut; DN 

11 1642A→C S548R PH-Rem 
Linker B (2) Mut; DN 

11 1654A→G R552G PH-Rem 
Linker B (1) Mut; DN 

11 1656G→C R552S PH-Rem 
Linker B (1) Mut; DN 

19 2930A→T Q977R Cdc25 B (1) Poly 
1Ctrl- Controls; DN- de novo 
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Table 2: Genotype-Phenotype Correlation 

No./Total (%) of Subjects 

Clinical Feature 
SOS1 
Mutation Alla 

Without PTPN11 
Mutationb 

Polyhydramnios 8/15 (53) 43/130 (33) NA 
Fetal Macrosomia 9/15 (60) NA NA 
Short Stature (<3rd 
centile) 2/15 (13) 84/115 (73)*** 45/64 (70)*** 

Macrocephaly 9/16 (56) 19/151 (12)*** NA 
Downslanting Palpebral 
Fissures 15/16 (94) NA NA 

Ptosis 16/16 (100) NA NA 
Low-Set Ears with 
Thickened Helix 16/16 (100) NA NA 

Thick Lips/Macrostomia 14/16 (88) NA NA 

Short/Webbed Neck 15/16 (94) NA NA 

Abnormal Pectus 16/16 (100) 144/151 (95) 46/61 (75)* 

Cardiac Involvement 13/16 (81) 132/151 (87) 42/66 (64) 
Pulmonary Valve 
Stenosis 10/16 (62) 93/151 (62) 30/65 (46) 

Septal Defect 4/16 (25) 29/151 (19) 11/63 (18) 

HCM 2/16 (12) 30/151 (20) 17/65 (26) 

Facial Keratosis Pilaris 8/16 (50) 21/151 (14)*** NA 

Curly Hair 14/16 (88) 44/151 (29)*** NA 

Cryptorchidism 6/9 (67) 64/83 (77) 25/35 (71) 

Mental Retardation 1/16 (6) 32/105 (30)* 21/59 (36)* 

Bleeding Diathesis 5/16 (31) 37/151 (25) NA 
aFrom Ref. 27.   bFrom Ref. 5.  Significance: *, < .05; **, < .01; ***, < .001. Definitions: HCM, 
hypertrophic cardiomyopathy; NA, not available. 
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Figure Legends 

 

Figure 1 (a) SOS1 domain structure and location of residues altered in Noonan syndrome. The 

predicted amino acid substitutions from the 14 SOS1 missense mutations are positioned below 

the cartoon of the SOS1 protein with its functional domains indicated above. Abbreviations: DH, 

Dbl homology domain; PH, plekstrin homology domain; Rem, RAS exchanger motif. (b) 

Location of the mutated residues on the three-dimensional structure of SOS1.  The functional 

domains are color coded as follows: Histone folds, cyan; DH, magenta; PH, orange; Rem, green; 

Cdc25, yellow. Residues affected by mutations are indicated with their lateral chains and 

numbered. Based on Ref. 17, which utilized structural data and computational modeling.  

 

Figure 2 RAS activation assay. Full-length, HA-tagged wild type (WT), R552G or W729L 

SOS1 were expressed in Cos-1 cells with HA-RAS. Binding of RAS to RAF-RBD was assayed 

to assess RAS activation in serum-starved cells (0 min) and after 5, 15 and 30 min of EGF 

stimulation.  Total RAS and SOS1 proteins in the whole cell lysates (WCL), shown in the lower 

two panels, and activated RAS, upper panel, were detected immunologically with anti-HA. All 

fold activation ratios were compared to SOS-WT at 0 min. 

 

Supplementary Figure 1 Facial dysmorphia in SOS1–associated Noonan syndrome. 

Photographs of 10 individuals with Noonan syndrome and the SOS1 mutation indicated below 

each of them. 

 










	Article File #1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

	Figure 1A
	Fig. 1B
	Figure 2
	Supplemental Figure 1

